Hessian recovery for finite element methods
نویسندگان
چکیده
منابع مشابه
Hessian recovery for finite element methods
In this article, we propose and analyze an effective Hessian recovery strategy for the Lagrangian finite element method of arbitrary order. We prove that the proposed Hessian recovery method preserves polynomials of degree k + 1 on general unstructured meshes and superconverges at a rate of O(hk) on mildly structured meshes. In addition, the method is proved to be ultraconvergent (two orders hi...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملGradient Recovery in Adaptive Finite Element Methods for Parabolic Problems
Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...
متن کاملFlux Recovery from Primal Hybrid Finite Element Methods
A flux recovery technique is introduced and analyzed for the computed solution of the primal hybrid finite element method for second-order elliptic problems. The recovery is carried out over a single element at a time while ensuring the continuity of the flux across the interelement edges and the validity of the discrete conservation law at the element level. Our construction is general enough ...
متن کاملAnalysis of Hessian Recovery Methods for Generating Adaptive Meshes
We study adaptive meshes which are quasi-uniform in a metric generated by the Hessian of a P1 finite element function. We consider three most efficient methods for recovering this Hessian, one variational method and two projection methods. We compare these methods for problems with anisotropic singularities to show that all Hessian recovery methods result in acceptable adaptive meshes although ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2016
ISSN: 0025-5718,1088-6842
DOI: 10.1090/mcom/3186